Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 11(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431240

RESUMO

Ph+ (BCR::ABL+) B-ALL was considered to be high risk, but recent advances in BCR::ABL-targeting TKIs has shown improved outcomes in combination with backbone chemotherapy. Nevertheless, new treatment strategies are needed, including approaches without chemotherapy for elderly patients. LIMK1/2 acts downstream from various signaling pathways, which modifies cytoskeleton dynamics via phosphorylation of cofilin. Upstream of LIMK1/2, ROCK is constitutively activated by BCR::ABL, and upon activation, ROCK leads to the phosphorylation of LIMK1/2, resulting in the inactivation of cofilin by its phosphorylation and subsequently abrogating its apoptosis-promoting activity. Here, we demonstrate the anti-leukemic effects of a novel LIMK1/2 inhibitor (LIMKi) CEL_Amide in vitro and in vivo for BCR::ABL-driven B-ALL. The IC50 value of CEL_Amide was ≤1000 nM in BCR::ABL+ TOM-1 and BV-173 cells and induced dose-dependent apoptosis and cell cycle arrest in these cell lines. LIMK1/2 were expressed in BCR::ABL+ cell lines and patient cells and LIMKi treatment decreased LIMK1 protein expression, whereas LIMK2 expression was unaffected. As expected, CEL_Amide exposure caused specific activating downstream dephosphorylation of cofilin in cell lines and primary cells. Combination experiments with CEL_Amide and BCR::ABL TKIs imatinib, dasatinib, nilotinib, and ponatinib were synergistic for the treatment of both TOM-1 and BV-173 cells. CDKN2Ako/BCR::ABL1+ B-ALL cells were transplanted in mice, which were treated with combinations of CEL_Amide and nilotinib or ponatinib, which significantly prolonged their survival. Altogether, the LIMKi CEL_Amide yields activity in Ph+ ALL models when combined with BCR::ABL-targeting TKIs, showing promising synergy that warrants further investigation.

2.
Biomedicines ; 9(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34829934

RESUMO

BET inhibitors (BETi) including OTX015 (MK-8628) and JQ1 demonstrated antileukemic activity including NPM1c AML cells. Nevertheless, the biological consequences of BETi in NPM1c AML were not fully investigated. Even if of better prognosis AML patients with NPM1c may relapse and treatment remains difficult. Differentiation-based therapy by all trans retinoic acid (ATRA) combined with arsenic trioxide (ATO) demonstrated activity in NPM1c AML. We found that BETi, similar to ATO + ATRA, induced differentiation and apoptosis which was TP53 independent in the NPM1c cell line OCI-AML3 and primary cells. Furthermore, BETi induced proteasome-dependent degradation of NPM1c. BETi degraded NPM1c in the cytosol while BRD4 is degraded in the nucleus which suggests that restoration of the NPM1/BRD4 equilibrium in the nucleus of NPM1c cells is essential for the efficacy of BETi. While ATO + ATRA had significant biological activity in NPM1c IMS-M2 cell line, those cells were resistant to BETi. Gene profiling revealed that IMS-M2 cells probably resist to BETi by upregulation of LSC pathways independently of the downregulation of a core BET-responsive transcriptional program. ATO + ATRA downregulated a NPM1c specific HOX gene signature while anti-leukemic effects of BETi appear HOX gene independent. Our preclinical results encourage clinical testing of BETi in NPM1c AML patients.

3.
Leuk Res ; 100: 106490, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33373830

RESUMO

Patients with FLT3-ITD mutated (FLT3-ITD+) Acute Myeloid Leukemia (AML), have frequently relapsed or refractory disease and FLT3-ITD+ inhibitors have limited efficacy. Rho kinases (ROCK) are constitutively activated by FLT3-ITD+ in AML via PI3 kinase and Rho GTPase. Upon activation by ROCK, LIM kinases (LIMK) inactivate cofilin by phosphorylation which affects cytoskeleton dynamics, cell growth and apoptosis. LIMK inhibition leads to cofilin activation via dephosphorylation and activated cofilin localizes to mitochondria inducing apoptosis. Thus, we investigated the therapeutic potential of the LIMK1/2 inhibitor CEL_Amide (LIMKi) in FLT3-ITD+ AML. Expression of LIMK1/2 in FLT3-ITD+ cell lines MOLM-13 and MV-4-11 cells could be detected by RT-qPCR and at the protein level. IC50 after LIMKi monotherapy was 440 nM in MOLM-13 cells and 420 nM in MV4-11 cells. Treatment with LIMKi decreased LIMK1 protein levels and repression of inactivating phosphorylation of cofilin in FLT3-ITD+ cells. Combination experiments with LIMKi and FLT3 inhibitors including midostaurin, crenolanib and gilteritinib were synergistic for treatment of MOLM-13 cells while combinations with quizartinib were additive. Combinations of LIMKi and the hypomethylating agent azacitidine or the ROCK inhibitor fasudil were additive. In NOD-SCID mice engrafted with MOLM13-LUC cells, the FLT3 inhibitor midostaurin and LIMKi delayed MOLM13-LUC engraftment as detected by in vivo bioluminescence imaging and the LIMKi and midostaurin combination prolonged significantly survival of leukemic mice. LIMK1/2 inhibition by the small molecule CEL_Amide seems to have promising activity in combination with FLT3 inhibitors in vitro as well as in vivo and may constitute a novel treatment strategy for FLT3-ITD+ AML.


Assuntos
Sinergismo Farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Quinases Lim/antagonistas & inibidores , Mutação , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Amidas/química , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Sequências de Repetição em Tandem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/genética
4.
Int J Mol Sci ; 19(1)2017 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-29295500

RESUMO

(1) Background: TP53 deficiency remains a major adverse event in Multiple Myeloma (MM) despite therapeutic progresses. As it is not possible to target TP53 deficiency with pharmacological agents, we explored the possibility of activating another p53 family member, p73, which has not been well studied in myeloma. (2) Methods: Using human myeloma cell lines (HMCLs) with normal or abnormal TP53 status, we assessed TP73 methylation and expression. (3) Results: Using microarray data, we reported that TP73 is weakly expressed in 47 HMCLs and mostly in TP53 wild type (TP53wt) HMCLs (p = 0.0029). Q-RT-PCR assays showed that TP73 was expressed in 57% of TP53wt HMCLs (4 out of 7) and 11% of TP53 abnormal (TP53abn) HMCLs (2 out of 18) (p = 0.0463). We showed that TP73 is silenced by methylation in TP53abn HMCLs and that decitabine increased its expression, which, however, remained insufficient for significant protein expression. Alkylating drugs increased expression of TP73 only in TP53wt HMCLs but failed to synergize with decitabine in TP53abn HMCLs. (4) Conclusions: Decitabine and melphalan does not appear as a promising combination for inducing p73 and bypassing p53 deficiency in myeloma cells.


Assuntos
Azacitidina/análogos & derivados , Melfalan/farmacologia , Mieloma Múltiplo/metabolismo , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/deficiência , Azacitidina/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Cisplatino/farmacologia , Ilhas de CpG/genética , Metilação de DNA/efeitos dos fármacos , Decitabina , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...